Two-Dimensional Simulations of Enhanced Heat Transfer in an Intermittently Grooved Channel
نویسندگان
چکیده
Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600<Re<1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages. @DOI: 10.1115/1.1459730#
منابع مشابه
Numerical Analysis of Fully Developed Flow and Heat Transfer in Channels with Periodically Grooved Parts (TECHNICAL NOTE)
To obtain a higher heat transfer in the low Reynolds number flows, wavy channels are often employed in myriad engineering applications. In this study, the geometry of grooves shapes is parameterized by means of four angles. By changing these parameters new geometries are generated and numerical simulations are carried out for internal fully developed flow and heat transfer. Results are compared...
متن کاملThree Dimensional Simulations of Enhanced Heat Transfer in a Flat Passage Downstream From a Grooved Channel
Spectral element simulations of three-dimensional flow and augmented convection in a flat passage downstream from a fully developed channel with symmetric, transverse grooves on opposite walls were performed for 405<Re<764. Unsteady flow that develops in the grooved region persists several groove-lengths into the flat passage, increasing both local heat transfer and pressure gradient relative t...
متن کاملEffects of the rectangular groove dimensions on the thermal features of the turbulent Al2O3-water nanofluid flow in the grooved tubes
The forced convection heat transfer of turbulent Al2O3-water nanofluid flow inside the grooved tubeswith the different aspect ratio of the rectangular grooves is numerically investigated. The governingequations have been solved using finite volume method (FVM) coupled with SIMPLE algorithm. It isassumed the heat flux is constant on the grooved walls. The Single-phase approach is applied for th...
متن کاملInvestigation of the thermo-hydraulic behavior of the fluid flow over a square ribbed channel
The thermo-hydraulic behavior of the air flow over a two dimensional ribbed channel wasnumerically investigated in various rib-width ratio configurations (B/H=0.5-1.75) atdifferent Reynolds numbers, ranging from 6000 to 18000. The capability of differentturbulence models, including standard k-ε, RNG k-ε, standard k-ω, and SST k-ω, inpredicting the heat transfer rate was compared with the experi...
متن کاملA model for enhanced heat transfer in an enclosure using Nano-aerosols
In this study, the behavior of nanoparticles using a numerical model is discussed. For this study a model for the expansion in free convection heat transfer and mix in a rectangular container with dimensions of 1 × 4 cm using Nano-aerosols in the air is going when copper nanoparticles, use and by changing the temperature difference between hot and cold wall, we will examine its impact on the ra...
متن کامل